ICN2 – NanomedSpain

Tag Archives: ICN2

El CSIC impulsa investigaciones en biotecnología, nanotecnología y demografía para atajar el coronavirus

La presidenta del CSIC, Rosa Menéndez, explica en esta tribuna los proyectos científicos del organismo para hacer frente al virus SARS-CoV-2, que causa la pandemia Covid-19

Virus de la familia Coronaviridae. / Luis Enjuanes-CNB-CSIC

En estos momentos tan complicados, desde el Consejo Superior de Investigaciones Científicas (CSIC) queremos agradecer a toda la sociedad la confianza que deposita en el sistema público de investigación, y con ello en la ciencia de nuestro país. Queremos informaros de que, en coordinación con las autoridades del Gobierno de España y de las Comunidades Autónomas en las que se ubican nuestros centros, hemos puesto en marcha una serie de iniciativas que estamos seguros que ayudarán a hacer frente a esta situación de crisis de la Covid-19, y sobre todo a reducir su impacto en el futuro. Porque los graves problemas que afronta nuestra sociedad requieren, hoy más que nunca, equipos de investigación que puedan abordarlos de forma coordinada y contando con el conocimiento, la experiencia y los recursos necesarios para ello.

Desde el pasado mes de enero equipos punteros del Centro Nacional de Biotecnología (CNB) del CSIC están liderando, en colaboración con otros grupos de investigación nacionales e internacionales, varios proyectos para conocer en detalle la estructura de este coronavirus, y abordar el desarrollo de vacunas, clave para proteger a la población frente a la infección.

Además del CNB-CSIC, y junto con grupos de investigación de otros centros de toda España, y en colaboración con empresas españolas, se están planteando soluciones a más corto plazo dirigidas al desarrollo y evaluación de agentes antivirales y anticuerpos terapéuticos. La participación de destacados equipos multidisciplinares y el empleo de avanzadas técnicas computacionales contribuirán, sin lugar a duda, a hacerlo posible.

Nuestros grupos del Instituto de Química Avanzada de Cataluña (IQAC-CSIC), el Centro Nacional de Microelectrónica de Barcelona (IMB-CNM-CSIC), el Instituto Catalán de Nanociencia y Nanotecnología (ICN2) y el Instituto de Ciencia de los Materiales de Aragón (ICMA) trabajan en técnicas rápidas para el diagnóstico precoz del virus, mediante técnicas microelectrónicas y nano(bio)tecnológicas para desarrollar avanzados dispositivos biosensores. El objetivo es proporcionar herramientas asequibles para la mayor parte de la población y permitan un diagnóstico rápido y eficaz.

Para conocer la dispersión del virus y su evolución, investigadores del Instituto de Biomedicina de Valencia (IBV-CSIC), del Instituto de Biología Integrativa de Sistemas (I2SysBIO, centro del CSIC-Universidad de Valencia) y del FISABIO (Fundación para la Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), en colaboración con hospitales de toda España, están poniendo en marcha un gran proyecto de análisis genómico, clave para entender cómo el virus se está propagando, cómo ha evolucionado y cómo puede hacerlo en el futuro.

Desde el Centro de Biología Molecular Severo Ochoa de Madrid (CBM-CSIC-UAM) se está analizando el aire de los hospitales para detectar la presencia del virus y encontrar soluciones que impidan su propagación.

La inmunización puede ser clave ante un rebrote de la epidemia, y por ello otros grupos de investigación colaboran en el análisis de los datos en la población general.

Conocer los patrones de movilidad ante la pandemia

Desde el Centro de Estudios Avanzados de Blanes (CEAB-CSIC), el Instituto de Física de Sistemas Complejos, IFISC (CSIC-Universidad de las Islas Baleares), y el Instituto de Economía, Geografía y Demografía (IEGD-CSIC) en Madrid, se diseña un ambicioso proyecto para entender los patrones de movilidad en todo el país ante la pandemia. En este estudio se tienen en cuenta aspectos tan importantes como la distribución espacial de la población, su estructura por edad, y la distribución y características de los centros sociosanitarios (hospitales, centros de salud, residencias de mayores). O cómo se han cumplido las medidas de contención.

Esto es solo una pequeña muestra de los más de 50 proyectos que el CSIC está desarrollando, de forma coordinada, para abordar globalmente el problema de esta pandemia. Siempre desde la perspectiva de generar conocimiento y técnicas para encontrar las mejores soluciones para preservar y fortalecer el bienestar y la calidad de vida de nuestra sociedad.

En el CSIC somos más de 11.000 personas en 120 centros distribuidos por la geografía española, que cubren todas las áreas de la ciencia, y trabajamos de forma coordinada para poder abordar desde la investigación problemas tan complejos como este. Unos teletrabajando y otros en los laboratorios. Los centros clave en estos proyectos continúan abiertos y trabajando 24 horas al día para encontrar soluciones lo antes posible.

Rosa Menéndez

Presidenta del Consejo Superior de Investigaciones Científicas


Fuente: CSIC 

El ICN2 lidera un proyecto europeo para diagnosticar la enfermedad COVID-19 en 30 minutos

El ICN2 trabajará en un biosensor óptico que detecte el coronavirus en media hora

Fuente: ICN2

La Comisión Europea ha impulsado una respuesta rápida para centrar los esfuerzos de investigación en el diagnóstico y el tratamiento de la enfermedad COVID-19 causada por el coronavirus SARS-CoV-2. El proyecto internacional CONVAT, está liderado por la profesora Investigación del CSIC en el Instituto Catalán de Nanociencia y Nanotecnología (ICN2) Laura Lechuga en el que también participan Italia y Francia. Además del grupo del Prof. Lechuga, otros tres centros participarán en él, como por ejemplo el grupo del Prof. Jordi Serra Cobo de la Universidad de Barcelona (UB), que tiene una amplia experiencia en el estudio del coronavirus en animales y su epidemiología.

El proyecto CONVAT, busca desarrollar un nuevo dispositivo basado en nanotecnología con un biosensor ópitco que permitirá la detección del coronavirus en unos 30 minutos, directamente a partir de la muestra del paciente y sin necesidad de realizar los análisis en laboratorios clínicos centralizados. Además, esta novedosa tecnología podría discriminar rápidamente si se trata de infección por coronavirus o por gripe común. Se espera que esté listo en los próximos meses. El dispositivo se utilizará también para el análisis de diferentes tipos de coronavirus presentes en animales reservorios, como los murciélagos, para poder monitorizar y vigilar una posible evolución de estos virus y prevenir futuros brotes infecciosos en humanos.

Fuente: ICN2 y CSIC

Las nanopartículas de óxido de cerio podrían mejorar el pronóstico del carcinoma hepatocelular

Una larga colaboración entre el IDIBAPS y el ICN2, encabezada por el Prof. Wladimiro Jiménez y el Prof. ICREA Víctor F. Puntes, ha demostrado que la administración de nanopartículas de óxido de cerio en un modelo animal de ratas puede competir con los tratamientos disponibles en la actualidad. La investigación publicada en Hepatology demuestra que los tejidos humanos también absorben y retienen las nanopartículas convirtiéndolas en una potencial y prometedora nueva estrategia farmacológica.

De izquiera a derecha: Guillermo Fernández‐Varo, Víctor Puntes, Wladimiro Jiménez y Meritxell Perramón.

El carcinoma hepatocelular es el cáncer de hígado más frecuente y ocupa la tercera posición en el ranking mundial de cánceres con mayor mortalidad. Su aparición está relacionada con los virus de la hepatitis B y C, el alcoholismo, enfermedades metabólicas del hígado y la exposición a ciertas toxinas. Aunque se han descrito los mecanismos moleculares con detalle, por el momento no se dispone de un tratamiento efectivo una vez superadas las fases tempranas de la enfermedad. Cuando ya no se puede recurrir a la ablación en los primeros estadios de progresión, las mejores aproximaciones terapéuticas no consiguen frenar la progresión de la enfermedad. Según publica la revista Hepatology, esto podría cambiar gracias a un tratamiento experimental basado en nanopartículas de óxido de cerio en el que hace tiempo que trabajan juntos el Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS) y el Instituto Catalán de Nanociencia y Nanotecnología (ICN2).

El trabajo explica cómo, gracias a sus propiedades antioxidantes y antiinflamatorias, las nanopartículas de óxido de cerio han podido revertir parcialmente los mecanismos celulares involucrados en la progresión del tumor y han conseguido aumentar de manera significativa la supervivencia en modelos animales de ratas. Los últimos firmantes del estudio son el Prof. Wladimiro Jiménez, jefe del Servicio de Bioquímica del Centro de Diagnóstico Biomédico del Hospital Clínic de Barcelona y jefe del grupo IDIBAPS Investigación traslacional en nuevas estrategias terapéuticas y diagnósticas en enfermedades hepáticas, y el Prof. ICREA Víctor F. Puntes, jefe del Grupo ICN2 de Nanopartículas Inorgánicas y también del Grupo de Nanopartículas farmacocinéticas del Vall d’Hebron Institut de Recerca (VHIR). El primer firmante es Guillermo Fernández-Varo, miembro del grupo de investigación IDIBAPS mencionado anteriormente y del CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd).

Esta investigación se inició hace casi una década y dio los primeros resultados cuando el IDIBAPS y el ICN2 publicaban el año 2016 un trabajo en el Journal of Hepatology, donde se ponía de manifiesto el potencial terapéutico antiinflamatorio de las nanopartículas de óxido de cerio para el tratamiento de varias enfermedades crónicas del hígado. El nuevo trabajo en Hepatology se centra en el carcinoma hepatocelular y analiza el impacto del tratamiento experimental sobre un modelo animal de ratas al que se les ha inducido el cáncer, estudia la distribución del fármaco en tres hígados humanos descartados para el trasplante y detalla la absorción intracelular en cultivos celulares de cáncer de hígado humano. Esta investigación traslacional acerca pues el nuevo tratamiento en las fases clínicas de experimentación.

El equipo de investigación administró a las ratas cuatro dosis de nanopartículas de óxido de cerio, dos por semana, 16 semanas después de provocarles el cáncer de hígado. Las nanopartículas, de morfología esférica y un tamaño de entre 4 y 20 nanómetros, se concentraban principalmente en el hígado y el bazo pocos días después de su administración. Las ratas tratadas atenuaban el número de nódulos cancerosos en el hígado, presentaban niveles reducidos del marcador de cáncer alfa-fetoproteína, mostraban menor proliferación de las células cancerosas y mayor muerte celular por apoptosis y tenían efectos beneficiosos al ver reducidos los efectos nocivos de la inflamación y la alteración del metabolismo de lípidos. Cuando se comparó la supervivencia de las ratas tratadas se observó que tanto las nanopartículas como la mejor opción terapéutica disponible en el momento del estudio doblaban la supervivencia de las ratas que pasaba de unos 15 días a más de 30.

La distribución de las nanopartículas en hígados humanos funcionales se observó mediante técnicas de imagen en órganos descartados para el trasplante. En sólo 30 minutos la mitad de las nanopartículas quedaban retenidas en el hígado formando aglomerados de diferentes tamaños en varias localizaciones. Los cultivos celulares procedentes de cáncer de hígado humano también mostraron una gran capacidad de adsorción de las nanopartículas después de 24 horas de exposición. Por tanto, el tratamiento basado en nanopartículas de óxido de cerio, que sin efectos secundarios igualaba los resultados de la mejor opción terapéutica disponible a fecha de hoy, podrían dar lugar a una estrategia farmacológica innovadora para una enfermedad necesitada de nuevas terapias.

Referencia del artículo: Guillermo Fernández‐Varo,  Meritxell Perramón,  Silvia Carvajal,  Denise Oró,  Eudald Casals,  Loreto Boix,  Laura Oller,  Laura Macías‐Muñoz,  Santi Marfà, Gregori Casals, Manuel Morales‐Ruiz, Pedro Casado, Pedro R. Cutillas, Jordi Bruix, Miquel Navasa, Josep Fuster, Juan Carlos Garcia‐Valdecasas, Mihai C. Pavel, Víctor Puntes, Wladimiro Jiménez. Bespoken nanoceria: A new effective treatment in experimental hepatocellular carcinoma. Hepatology. First published:21 January 2020. DOI: https://doi.org/10.1002/hep.31139

Fuente: 

Nanocápsulas de carbono para la radioterapia contra el cáncer

 

Los avances en nanomedicina destinados al tratamiento del cáncer van dirigidos a la producción de agentes terapéuticos cada vez más eficientes, biocompatibles, e inteligentes. Uno de los tratamientos más prometedores incluye el uso de nanopartículas radiactivas, administradas intravenosamente al cuerpo, para hacer frente a los tumores. Ahora, un equipo internacional formado por investigadores del Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC) y el Instituto Catalán de Nanociencia y Nanotecnología (ICN2), otros de centros de investigación y universidades del Reino Unido, Francia, Grecia, Praga e Italia, y una empresa francesa (Cis Bio International), dentro del consorcio del proyecto europeo RADDEL (RADioactivity DELivery), han conseguido preparar nanocápsulas estables que, una vez irradiadas con neutrones, se activan y consiguen unos niveles de radiactividad unas 100 veces mayores que los conseguidos en anteriores estudios, permitiendo reducir la proliferación y crecimiento de los tumores cancerígenos. El estudio se ha publicado este diciembre en la revista ACS Nano.

Alta radioactividad: la clave para parar el crecimiento de los tumores

Esta gran radiación conseguida permite que las nanocápsulas puedan utilizarse para radioterapia contra el cáncer, y no sólo para estudios de imagen biomédica, como hasta ahora. La imagen biomédica requiere una radiactividad más baja, ya que se utiliza para detectar en tiempo real la presencia y posición de las nanocápsulas dentro del organismo. La radioterapia, en cambio, requiere una radiación más alta, ya que permite destruir las células cancerígenas que forman los tumores, de manera localizada. La gran radioactividad conseguida en este estudio, permite, además, que la dosis administrada pueda ser mucho más baja que con otros tratamientos.

Las nanocápsulas se probaron en experimentos in vivo con ratones, y se vio una reducción de algunos de los tumores, y una prevención de su proliferación y reducción del ritmo de crecimiento. «Todavía hay que hacer más estudios para calcular las dosis óptimas y los efectos secundarios, pero los resultados existentes son muy prometedores», explica Gerard Tobías Rossell, investigador del ICMAB-CSIC.

Nanotubos de carbono: impermeables y biocompatibles

Las nanocápsulas son formadas por nanotubos de carbono, es decir, por láminas de grafeno enrolladas y selladas por las puntas. «Estas nanocápsulas son impermeables, ya que la pared de grafeno no permite que los átomos radiactivos que hay en el interior se esparzan por el resto del cuerpo», afirma Tobías.

Los átomos del interior son de samario (cloruro de samario), ya utilizado en hospitales como paliativo para metástasis óseas. Cuando se preparan las nanocápsulas, los átomos no son radiactivos. Sólo después de ser irradiados con neutrones, los isótopos 152, estables, se convierten en isótopos 153, radiactivos, y útiles para el tratamiento contra el cáncer.

Nanocápsulas estables: facilidad de manipulación

El hecho de trabajar con partículas no radiactivas tiene múltiples ventajas: por un lado, permite realizar todo el proceso de llenado de los tubos y posterior procesado en cualquier laboratorio, ya que no se requiere el uso de instalaciones radiactivas. También se reduce la generación de residuos radiactivos y la exposición de estos productos a los investigadores. Además, permite aliviar la limitación de tiempo que impone el uso de elementos radiactivos, ya que estos requieren una manipulación generalmente mucho más rápida. Las nanocápsulas se pueden almacenar sin ningún tipo de requerimiento especial hasta el día de su utilización.

Articulo de referencia: Neutron Activated 153Sm Sealed in Carbon Nanocapsules for in Vivo Imaging and Tumor Radiotherapy. Julie T.-W. Wang, Rebecca Klippstein, Markus Martincic, Elzbieta Pach, Robert Feldman, Martin Šefl, Yves Michel, Daniel Asker, Jane K. Sosabowski, Martin Kalbac, Tatiana Da Ros, Cécilia Ménard-Moyon, Alberto Bianco, Ioanna Kyriakou, Dimitris Emfietzoglou, Jean-Claude Saccavini, Belén Ballesteros, Khuloud T. Al-Jamal*, Gerard Tobias ACS Nano 2019. DOI: 10.1021/acsnano.9b04898

Fuentes: